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The coupled flow and heat transport equations were solved by PFLOTRAN,

which is a parallel multiphase flow simulator implemented in object-oriented

FORTRAN.

Deep Learning Analysis

Conclusion
Å Simple ML algorithm can estimate the water flux using a single combined

temperature and pressure probe. The results were robust in the case of added noise.

Å Using only temperature sensor, the gradient boosting was very sensitive to

measurement error

Å The depth of the combined sensor was not critical, as long as it was relatively

shallow

Å In general, the deep learning algorithms with dropout regularization, which behaves

like an L1 norm, perform better than decision tree based models if noise filtering

process are done before analysis.

Å CNN outperformance might be explained by kernel mechanism and its feature

engineering properties.

The infiltration flux at time, t, will not necessarily be reflected in the temperature

and pressure at depth at time, t. Thus, we allowed the learning tools to consider

temperature and pressure values at the time of surface flux inference and after

some time delay as well as temperatures before the time of flux. In addition to

considering temperature time series,

we used spatial, and temporal

gradients of temperature as the

features of models. Also, to sample

the full range of temperature,

pressure, and flux conditions while

allowing for training on time-

delayed observations, we divided

the 110,000 observation times into

six paired training/testing periods.

This investigation represents a feasibility study of machine learning

methods in surface/ground water exchange. A highly resolved numerical

model of water flow and heat transport was driven with time series of river

stage and temperature to produce time series of surface/ground water

exchange flux and pressure-temperature at multiple depths. The forecast

targets for the machine learning algorithms were the flux time series; the

subsurface temperatures and (or) pressure at multiple depths were used to

develop features. Features included the temperature/pressure, time delayed

temperature/ pressure, and temperature/pressure gradients in space and

time.

Methods

Å The data were generated synthetically based on a 1-D cross-section of a

3-D hydrothermal model developed for a Department of Energy

monitoring site located in southeastern Washington State.

Å To examine the effects of sensor errors on our prediction, parallel

erroneous data were generated by adding zero mean Gaussian random

errors with a standard deviation equal to a given percent (100/SNR) of

the variance of all measurements of that type collected at all depths and

times.

Å 70% of data were used as the training-validation and 30% were used for

testing.

Å Four gradient boosting (GB) models were compared to estimate water

flux using all pressure and temperature sensors, only temperature, a

single pressure, and single combined pressure and temperature. We

used regression tree (RT) as the base model for comparison.

Å Feature importance analyses were done using the gradient boosting

built-in function.

Results (Classic ML)
Using pressure and temperature at multiple

depths, GB was able to infer the flux with high

accuracy (Figure a and b). Using only

temperature data appears to provide reasonable

estimates of flux with no noise (Figure c), but

the performance is highly degraded when

measurement noise is added (Figure d). A

single pressure sensor provides high quality

flux estimates (Figures e and f), which are

improved noticeably by the addition of a

collocated temperature sensor (g and h). This

single combined sensor performs as well as an

array of multiple sensors (Figures 8a and 8b).

Testing set predicted vs observed fluxes. For multi sensor
scenarios,sensorsplanted at 0.015, 0.15, 0.195 m. Sensors
in the single casescenarios were located at 0.015m depth.
The left panels show results for noise free data while the
right panels represent noisy data. A,B: All -data; C,D: only
temperature; E.F: single pressure; G,H: single collocated
pressure and temperature.

Performance of one 
pressure sensor and 
a combined 
pressure and 
temperature 
observation set 
with respect to the 
depth of installation 
and the ML tool 
used for analysis.

Further investigation showed that the performance was uniformly improved by

choosing GB over RT, but the improvement was relatively small. In fact, the use of

GB rather than RT offered approximately the same improvement as adding a

temperature sensor to a single-pressure-sensor observation set. Of practical

importance, any sensor depth above approximately 1 m was acceptable, with

performance degrading considerably for deeper sensors.

Feature Importance Analysis

When errors are added, GB selects all of the three direct

pressure observations, with decreasing weight with depth.

With no noise added (blue bars), the most informative

observation was a deep pressure gradient. With noise

added (orange bars), the most informative observation

was a shallow pressure measurement.

Gradient boosting feature importance for pressure and 
temperature sensors planted at, 0.015, 0.105, 0.195 m

Time series of training (blue) and testing (red) sets illustrated
using data from 0.005m depth. A: upward flux, B: pressure,and
C: temperature.

As we could not resolve the water flux using only temperature sensor in the case of

noisy data. We considered using different classic filtering approaches to denoise

the data. We then applied deep learning algorithms to infer surface flux from

subsurface temperature observations. Results of these analyses suggest:

ÅConvolutional Neural Networks had consistently superior performance for all

noise levels with filtering applied.

ÅNone of the models performed better with low noise than with no noise added

(Upper pannel) A: Performance of models and
widows function set with respect to the SNR
values.
(Lower Pannel) Training (left) and testing (right)
results of CNN using temperature sensors,which
are located at, 0.005, 0.15 m, 0.255 m and 1.95 m.
A, B: training and testing set fit for noise free data
.C, D: training and testing set fit for noisy data
with SNR=100. E, F: training and testing set fit for
filtered data using best filter (Flat).

Left: 3D flow andheat transport model built for the study site , Right: the 1D column model that mimics the
Installed thermistor array. Colorspot is the location where the thermistor array is used in ML analysis. The 
dimension for the 3D model is 400 m _ 400 m _ 20m in XYZ directions.
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This investigation represents a feasibility study of machine learning

methods in surface/ground water exchange. A highly resolved numerical

model of water flow and heat transport was driven with time series of river

stage and temperature to produce time series of surface/ground water

exchange flux and pressure-temperature at multiple depths. The forecast

targets for the machine learning algorithms were the flux time series; the

subsurface temperatures and (or) pressure at multiple depths were used to

develop features. Features included the temperature/pressure, time

delayed temperature/ pressure, and temperature/pressure gradients in

space and time.
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Methods

Å The data were generated synthetically based on a 1-D cross-section of a 3-D

hydrothermal model developed for a Department of Energy monitoring site located

in southeastern Washington State.

Å To examine the effects of sensor errors on our prediction, parallel erroneous data

were generated by adding zero mean Gaussian random errors with a standard

deviation equal to a given percent (100/SNR) of the variance of all measurements of

that type collected at all depths and times.

Å 70% of data were used as the training-validation and 30% were used for testing.

Å Four gradient boosting (GB) models were compared to estimate water flux using all

pressure and temperature sensors, only temperature, a single pressure, and single

combined pressure and temperature. We used regression tree (RT) as the base

model for comparison.

Å Feature importance analyses were done using the gradient boosting built-in

function.
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Left: 3D flow and heat transport model built for the study site, Right: the 1D
column model that mimics the Installed thermistor array. Color spot is the
location where the thermistor array is used in ML analysis. The dimension
for the 3D model is 400m _ 400m _ 20m in XYZ directions.
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The infiltration flux at time, t, will not necessarily be reflected in the temperature and pressure

at depth at time, t. Thus, we allowed the learning tools to consider temperature and pressure

values at the time of surface flux inference and after some time delay as well as temperatures

and pressure before the time of flux. In addition to considering temperature/pressure time

series, we used spatial, and temporal gradients of temperature as the features of models.

Also, to sample the full range of temperature, pressure, and flux conditions while allowing for

training on time-delayed observations, we divided the 110,000 observation times into six

paired training/testing periods.

Time series of training
(blue) and testing (red)
sets illustrated using data
from 0.005 m depth. A:
upward flux, B: pressure,
and C: temperature.

Feature Engineering 
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Using pressure and temperature at multiple depths, GB was able to infer the flux with high

accuracy (Figure a and b). Using only temperature data appears to provide reasonable estimates of

flux with no noise (Figure c), but the performance is highly degraded when measurement noise is

added (Figure d). A single pressure sensor provides high quality flux estimates (Figures e and f),

which are improved noticeably by the addition of a collocated temperature sensor (Figures g and

h). This single combined sensor performs as well as an array of multiple sensors (Figures a and b).

Results (Classic ML)

Testing set predicted vs observed fluxes. For multi sensor
scenarios,sensorsplanted at 0.015, 0.15, 0.195 m. Sensorsin the
single casescenarioswere located at 0.015m depth. The left panels
show results for noise free data while the right panels represent
noisy data. A,B: All -data; C,D: only temperature; E.F: single
pressure; G,H: single collocated pressure and temperature.


