A mathematical model for the transport of multi-component PFAS in unsaturated porous media

Hassan Saleem, Bo Guo, Hoshin Gupta

MOTIVATION
PFAS retained in the vadose zone there for long periods of time. Moreover, the presence of multiple PFAS components introduces additional complexities to the flow and transport system.

RESEARCH QUESTIONS
- How does competitive adsorption affect PFAS retention and leaching in the vadose zone?
- What are the conditions under which competitive adsorption will significantly accelerate PFAS leaching?
- Our goal: develop a mathematical model that accounts for multi-component transport and competitive adsorption among PFAS in the vadose zone.

METHODS
Solving the unsaturated flow and advection diffusion equations for PFAS numerically in mixed and single components.

- **Richards equation**
- **Flow equation**
- **Advection Diffusion equation**
- **Langmuir isotherm equation**

Impact of competitive adsorption on PFAS leaching
Release of PFAS mixtures. Three scenarios:
1. PFOS + PFOA
2. PFOA + PFPeA
3. PFOS + PFPeA

Take-home message
PFAS competitive adsorption in multi-components

Key factors
- PFAS chain length
- PFAS concentration
- The number of PFAS species
- The amount of AWI
- The flow regime condition

Conclusion:
1. Longer-chain PFAS dominantly occupy the AWI when multiple PFAS are present.
2. Competitive adsorption is only significant at relatively higher concentrations (> 1 mg/L).
3. The difference in the mobilities of PFAS can lead to spatial separation that further reduces the significance of competitive adsorption.

Future work:
1. Conduct more comprehensive numerical simulations considering a wide range of PFAS components to fully evaluate the impact of potential competitive adsorption among PFAS on their long-term retention and leaching to groundwater.
2. Apply the model to field contaminated sites to quantify the risks of PFAS leaching to groundwater in the presence of multi-components.

Acknowledgement:
Subsurface Flow Physics Group
saleemh@email.arizona.edu

Cognitive Predictors of Student Success:
Non-traditional factors among them inadsorption

Future research:
- A Predictive Validity Comparison Between Domestic and International Students