

Cassidy Soloff¹, Ewan C. Crosbie^{2,3}, Simon Kirschler^{4,5}, Richard H. Moore², Michael A. Shook², Shuaiqi Tang^{6,7}, Kenneth L. Thornhill^{2,3}, Christiane Voigt^{4,5}, Hailong Wang⁶, Edward L. Winstead^{2,3}, Luke D. Ziemba², Armin Sorooshian¹ ¹University of Arizona, ²NASA Langley Research Center, ³Analytical Mechanics Associates, ⁴Institute of Atmospheric Physics, German Aerospace Center, ⁵Institute of Atmospheric Physics, University Mainz, Germany, ⁶ Pacific Northwest National Laboratory, ⁷Nanjing University

	Background and Objectives		
•	NASA's <u>Aerosol Cloud meTeorology Interactions oVer the</u> western <u>AT</u> lantic Experiment (ACTIVATE): 162 joint research flights with two spatially coordinated aircraft over three years	S	
•	Question: Can cloud condensation nuclei (CCN) concentrations be predicted using particle size spectra and	b	New England Langley
•	chemical composition over the northwest Atlantic? Goal: Advance understanding of droplet activation in the northwest Atlantic, a complex region with diverse meteorol and influence from continental and marine aerosol sources	logy	
•	The hygroscopicity parameter, κ , describes the ability of a	5	(A)
	particle to uptake water $x = 0.12 \pm 0.02$ and $x = 0.63 \pm 0.01$ porform well globe		60 Colorade
	(Pöhlker et al., 2023) (Pöhlker et al., 2023)	any	ter 0 - USA (aircraft) Mexico City (aircraft)
			- ¹ ∞ ₁₀₀ − 1000 − 100 − 100 − 100 − 100 − 100 − 1
(
	Predicting CCN		-120
1.	Predicting CCN <u>Merge data</u> Size Distribution: Scanning Mobility Particle Sizer (SMPS) [10-100 nm] + Laser Aerosol Spectrometer	2.	$\kappa = \sum_{i}^{-120}$
1.	Predicting CCN <u>Merge data</u> Size Distribution: Scanning Mobility Particle Sizer (SMPS) [10-100 nm] + Laser Aerosol Spectrometer (LAS) [100-3000 nm] Chemistry: Aerosol Mass Spectrometer (AMS) Cloud Screening: Fast Cloud Droplet Probe (FCDP) CCN Concentration: CCN spectrometer	2.	$\kappa = \sum_{i}^{-120} S(D) = \frac{1}{D^3}$
1.	Predicting CCNMerge dataSize Distribution: Scanning Mobility Particle Sizer(SMPS) [10-100 nm] + Laser Aerosol Spectrometer(LAS) [100-3000 nm]Chemistry: Aerosol Mass Spectrometer (AMS)Cloud Screening: Fast Cloud Droplet Probe (FCDP)CCN Concentration: CCN spectrometerCalculate bulk κ using κ_{org} and κ_{inorg} from Pöhlker et al.(2023)	2.	$\kappa = \sum_{i}^{-120}$ $S(D) = \frac{1}{D^3}$
1. 2. 3.	Predicting CCNMerge dataSize Distribution: Scanning Mobility Particle Sizer(SMPS) [10-100 nm] + Laser Aerosol Spectrometer(LAS) [100-3000 nm]Chemistry: Aerosol Mass Spectrometer (AMS)Cloud Screening: Fast Cloud Droplet Probe (FCDP)CCN Concentration: CCN spectrometerCalculate bulk κ using κ_{org} and κ_{inorg} from Pöhlker et al.(2023)Calculate critical activation diameter (D _c) forsupersaturation (SS) of the CCN spectrometer using κ -Köhler theory	2. 3. 4.	$\kappa = \sum_{i}^{-120}$ $S(D) = \frac{1}{D^3}$
1. 2. 3.	Predicting CCNMerge dataSize Distribution: Scanning Mobility Particle Sizer(SMPS) [10-100 nm] + Laser Aerosol Spectrometer(LAS) [100-3000 nm]Chemistry: Aerosol Mass Spectrometer (AMS)Cloud Screening: Fast Cloud Droplet Probe (FCDP)CCN Concentration: CCN spectrometerCalculate bulk κ using κ_{org} and κ_{inorg} from Pöhlker et al.(2023)Calculate critical activation diameter (D _c) forsupersaturation (SS) of the CCN spectrometer using κ -Köhler theoryIntegrate SMPS+LAS size distribution for D _p >D _c to get	2. 3. 4.	$\kappa = \sum_{i}^{-120}$ $S(D) = \frac{1}{D^3}$ <i>ieory</i>
1. 2. 3.	Predicting CCNMerge dataSize Distribution: Scanning Mobility Particle Sizer(SMPS) [10-100 nm] + Laser Aerosol Spectrometer(LAS) [100-3000 nm]Chemistry: Aerosol Mass Spectrometer (AMS)Cloud Screening: Fast Cloud Droplet Probe (FCDP)CCN Concentration: CCN spectrometerCalculate bulk κ using κ_{org} and κ_{inorg} from Pöhlker et al.(2023)Calculate critical activation diameter (D _c) forsupersaturation (SS) of the CCN spectrometer using κ -Köhler theoryIntegrate SMPS+LAS size distribution for D _p >D _c to getpredicted CCN concentration	2. 3. <i>CCN</i> th	$\kappa = \sum_{i}^{-120}$ $S(D) = \frac{1}{D^3}$

- observed D_c

System Science Pathfinder Program Office.

adiative forcing, Nat Commun 14, 6139, 10,1038/s41467-023-41695-8 https://doi.org/10.5194/acp-7-1961-2007

CCN Closure Analysis for the ACTIVATE Campaign

