- pH in cloud water using airborne measurements.
- chemical influence on pH.

- summers, focusing on aerosol-cloud interactions.

summer, and summer Bermuda. NW Atlantic summer has pH values greater than 5 between 1000 and 2000 m compared to the other seasons. W Pacific reached the highest altitude with a pH greater than 5 around 5000 and 6000 m.

Contrasting airborne cloud water pH measurements in diverse regions: Statistics and relationships with constituents

Kayla Preisler¹, Ewan C. Crosbie^{2,3}, Grace Betito¹, Andrea Corral¹, Eva-Lou Edwards³, Miguel Ricardo A. Hilario¹, Kira Zeider¹, Armin Sorooshian¹ ¹University of Arizona, ²AMA, ³NASA Langley Research Center

> Figure 4. Principal Component Analysis (PCA) plots of explained variance and loadings from each region. Principle component 1 (PC1) explains the most variance in the data, PC2 explains the second most variance and is perpendicular to PC1. Each loading represents its contribution to that PC.

Results

	Table 2. p⊦	l equations for each
	5 (Left Colu	mn). In the NW Atlar
	-0.71 and -0	0.54. In the NE Pacifi
_	Region	
	NW Atlantic	nH = 4

Region	Regression Equation
NW Atlantic	$pH = 4.99 - 0.71(C_2O_4) - 0.04(NO_3) + 0.30(NSS - Ca)$
W Pacific	$pH = 5.23 - 0.54(C_2O_4) + 0.03(NO_3) - 0.11(NSS - SO_4)$
NE Pacific	$pH = 4.58 - 0.04(NO_3) - 0.14(MSA) + 0.29(NSS - Ca)$

Figure 5. (Left column) Scatter plots demonstrate predictions of pH from the top three species estimated from correlation bar plots in a) NW Atlantic, b) W Pacific, and c) NE Pacific. (Right column) Correlation bar plot of each region using the common species measured by IC. pH has the highest correlation with NSS-Ca (0.35) in the NW Atlantic, NSS-SO₄ (-0.63) in the W Pacific, and NSS-Ca (0.32) in the NE Pacific.

Acknowledgments

NASA grant 80NSSC19K0442 in support of ACTIVATE, a NASA Earth Venture Suborbital-3 (EVS-3) investigation funded by NASA's Earth Science Division and managed through the Earth System Science Pathfinder Program Office. NE Pacific measurements were funded by the Office of Naval Research.

region calculated from the linear regression shown in Figure ntic and W Pacific, oxalate influences pH with coefficients of c, NSS-Ca influences pH with a coefficient of 0.29.

References

Crosbie et al. (2018), https://doi.org/10.5194/amt-11-5025-

Pye et al. (2020), https://doi.org/10.5194/acp-20-4809-2020 Sorooshian et al. (2018), https://doi.org/10.1038/sdata.2018.26