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1. Introduction

• Precise Evapotranspiration (ET) estimation supports effective water 

resource management.

• The PT–JPL model estimates ET by incorporating biophysical 

constraints into the Priestley–Taylor equation. 

• In contrast, the Penman–Monteith (PM) model integrates aerodynamic 

and surface resistance parameters. 

• These fundamental differences in formulation and parameterization can 

lead to varying model performance across different environmental 

conditions. 

Objective:

• This study evaluates the performance of the PT–JPL and PM models 

over five flux tower sites in Arizona by comparing model outputs with 

observed data using statistical metrics and distribution analyses.

Study Area:

• Arizona’s climate is 

characterized by arid to semi-

arid conditions, with high 

temperatures, limited annual 

precipitation, and strong 

seasonal variability 

Datasets:

Dataset Type Model Source Product Name
Spatial 

Resolution

Temporal 

Resolution

Air Temperature PM and PT-JPL

AORC AORC Version 1.1 800 m 01-hourly

Air Pressure PM and PT-JPL

Wind Speed PM

Specific Humidity PM and PT-JPL

Downward 

Shortwave/Longwave
PM and PT-JPL

Precipitation PM

LAI PM

MODIS

MOD15A2H level 4 500 m
08-daily

Emissivity PM and PT-JPL MOD21A2 Version 6.1 1 km

Land Cover PM
MCD12Q1 Version 6.1 

(LC_Type1)
500 m yearly

Albedo PM and PT-JPL ERA5 Land ERA5 Land 9 km 01-hourly

NDVI PT-JPL MODIS MOD13Q1
Point 

based
16-daily

Observed ET PM and PT-JPL AmeriFlux AmeriFlux
Point 

based
0.5-hourly

2. Materials and Methods

ET Modeling:

• ET was estimated using two approaches: the PT–JPL model and PM 

model.

• Both model outputs were compared to observed ET using metrics 

including Kling–Gupta Efficiency Skill Error (KGEss), coefficient of 

determination (R²), and Root Mean Square Error (RMSE). 

Kolmogorov–Smirnov (K–S) Test:

• This non-parametric test quantifies the maximum absolute difference (D) 

between the empirical cumulative distribution functions (CDFs) of the 

observed ET and the ET estimates from each model.

3. Results

Fig. 1. Study area and site locations

Table 1. Dataset used in this study to develop and validate both models

Fig 2. Time-series plot of ET 

estimation using both methods over 5 

flux tower sites. For PM: 2018-2022 

(calibration), 2022-2024 (validation). 

For PT-JPL: (2018-2024) since it 

does not need calibration.

Fig 3. Scatterplot of ET: blue circles and orange squares represent ET data 

points from PT-JPL and PM models, respectively. 

Method Site

2018 - 2022 2022 – 2024

KGEss R² RMSE
Bias 

Ratio
KGEss R² RMSE

Bias 

Ratio

PT-JPL vs. 

Observed

US-SRG 0.76 0.57 21.36 0.6 0.80 0.68 19.25 0.5

US-SRM 0.87 0.67 16.04 0.5 0.86 0.73 14.87 0.5

US-Whs 0.40 0.49 25.97 1.2 0.53 0.69 23.97 1.0

US-Wkg 0.69 0.58 20.71 0.8 0.81 0.75 18.11 0.6

US-xSR 0.66 0.38 23.96 0.9 0.66 0.61 21.06 0.8

Average 0.68 0.54 21.61 0.8 0.73 0.69 19.45 0.69

PM vs. 

Observed

US-SRG 0.74 0.69 19.76 0.5 0.80 0.75 18.34 0.5

US-SRM 0.79 0.75 15.02 0.5 0.88 0.83 11.66 0.4

US-Whs 0.83 0.63 13.12 0.6 0.86 0.68 16.52 0.7

US-Wkg 0.80 0.67 14.91 0.6 0.85 0.78 15.60 0.5

US-xSR 0.44 0.31 26.24 1.0 0.80 0.65 16.30 0.6

Average 0.72 0.61 17.81 0.64 0.84 0.74 15.68 0.54

3. Results

Fig 4. Cumulative distribution 

function and K-S test results for 

both models: PT-JPL and PM 

ET vs. observed ET.

Table 2. Comparison of PT-JPL and PM model performance against observed 

latent heat flux across multiple flux tower sites.

4. Conclusion

• PM outperforms PT–JPL, with higher average KGEss (0.72–0.84), 

R² (0.61–0.74), and lower RMSE (15.68–17.81 W/m²) compared to 

PT–JPL (KGEss: 0.68–0.73, R²: 0.54–0.69, RMSE: 19.45–21.61 

W/m²) for both periods. 

• The bias ratio analysis further supports this, showing lower average 
bias ratios for PM (0.64–0.54) than PT–JPL (0.80–0.69).

• The K–S test confirms significant differences (p < 0.001) between 

observed and modeled ET distributions, with D = 0.09–0.32 for PT–

JPL vs. observed and D = 0.06–0.19 for PM vs. observed. 

• PT–JPL overestimates ET, while PM underestimates it, particularly 

at higher fluxes. 

• This discrepancy underscores the need for further refinement in 

model parameterization, improved input data resolution, and 

incorporation of additional environmental constraints to enhance 

predictive accuracy. 

• Future research should integrate machine learning techniques, data 

assimilation methods, and enhanced meteorological datasets to 

optimize ET model performance in water-limited environments.

Both models capture seasonal ET trends, but PM 
outperforms PT–JPL in accuracy; however, both 

underestimate high ET values
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