

US Army Corps

of Engineers.

Mohammad A. Farmani¹, Ahmad Tavakoly², Ali Behrangi¹, Yuan Qiu¹, Aniket Gupta¹, Muhammad Jawad¹, Xueyan Zhang¹, Matthew Geheran², Guo-Yue Niu¹ ¹ Department of Hydrology and Atmospheric Sciences, University of Arizona

1. Introduction & Objectives

Streamflow Prediction Challenges:

Large-scale models, such as NOAA's NWM, struggle with streamflow predictions in arid southwestern U.S., often overestimating baseflow and failing to capture low-flow conditions.

Key Uncertainties:

- Inconsistent frameworks for flux and infiltration parameters.
- Overlooked soil structure impacts on infiltration and baseflow.
- Errors in precipitation data due to coarse spatial and temporal resolution.
- Limited ability of precipitation to capture localized extreme events critical for recharge.

Hypothesis:

Baseflow generation processes in hydrological significantly contribute to streamflow prediction inaccuracies **Objective:**

Provide guidance for selecting reliable hydrological schemes

and datasets to improve streamflow predictions in dry regions.

2. Methodology

Model Setup

- Enhanced Noah-MP:
- Mixed-form Richards equation down to bedrock.
- Single and dual-permeability physics for macropore flow.
- Surface ponding thresholds for improved infiltration modeling.
- Coupled Model:
- Noah-MP outputs routed through RAPID for daily streamflow predictions

Category	Experiment name	Soil Moisture Solver	Ponding depth (mm)	Soil Hydraulics	Forcing
Hydrological Process	СН	Mixed Form RE	50	Brooks- Corey/Clapp- Hornberger	NLDAS-2
	VGM	Mixed Form RE	50	Van-Genuchten	
	VGM0	Mixed Form RE	0	Van-Genuchten	
	DPM	Dual Permeability, Mixed Form RE	50	Van-Genuchten	
Hydraulic Parameters	ML	Mixed Form RE	50		
	PTF50	Mixed Form RE	50	Van-Genuchten	NLDAS-2
	DPMPTF0	Dual Permeability, Mixed Form RE	0		
Precipitation	NLDAS	Mixed Form RE	50	Van-Genuchten	NLDAS-2
	IMERG				NLDAS-2, IMERG
	AORC				NLDAS-2, AORC

Table 1. Model Experiments configurations. The surface and subsurface runoff generated from these excrements were routed using RAPID to compute daily streamflow

Metrics:

- Compared Baseflow Index (BFI) from Noah-MP-RAPID and NWM against USGS-derived BFI.
- Assessed streamflow predictions using Kling-Gupta Efficiency (KGE) and low-flow RMSE metrics.

Improving Streamflow Predictions in the Dry Southwestern United States Through Understanding of Baseflow Generation Mechanisms

² US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS, USA,

an KGE	Number of stations with positive KGE	Low flow RMSE
.16	221	2.35
.17	227	2.07
.28	257	1.62
.21	229	1.77
.13	211	2.50
.29	272	1.57
.28	257	1.62
.06	200	2.62