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Background

Impact of SLH on OH main chemical sinks (2016-2018)
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The hydroxyl (OH) radical is the primary oxidant in the
Farth’s atmosphere, regulating gaseous air pollutants like
carbon monoxide and greenhouse gases such as methane.

How does including halogens improve constraints on OH?
Saiz-Lopez et al, 2023
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Fig.1 Impact of Short-Lived Halogen compounds on atmospheric oxidation
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Research questions and objectives

radicals (OH)?

\ methane (CH,)?

ﬁ How does the interplay of OH, CH,, and CO change m
the presence of SLH
2. How do Short-Lived Halogens
abundance and reactivity of tropospheric hydroxyl

(SLH) affect the

3. What is the impact of halogen-driven changes in OH
levels on the lifetime and budget of atmospheric

/

We implement an emission-driven
Community Atmosphere Model with chemistry (CAM-chem) in
the Community Earth System Model Version 2.2 (CESM2.2) for
2014-2018 period and demonstrate the effect of incorporating
detailed Short-Lived Halogen (SLH) chemistry representation on
both emission- and concentration-driven CH, simulations
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Fig.2 Difference in CH, and CO loss and production between simulations with and without Short-Lived
Halogen (SLH) representation

~

» There is a strong reduction in CH,+OH loss across the tropics and mid-latitudes.

* The reduction in OH decreases CO chemical loss and the chemical production during winter.
* CO chemical loss increases over continental regions in summer, probably due to higher OH
through the increase of HO,+NO secondary OH sources.

Comparison with NASA ATom field campaigns
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Comparison with GOSAT and MOPITT XCH, and XCO
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Fig.4 Comparison of CH, and CO total columns with GOSAT and MOPITT satellite retrievals

Methane Budget and Lifetime for 2017
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Fig.5 CH, annual budget and lifetime for 2017

KThe significant reduction in CH, oxidation by OH in simulations with the SLm

troposphere.

representation is partially compensated by an increase in CH,+Cl oxidation in the

* In emission-driven simulations, the net reduction in CH, chemical loss is about 43
TgCH, yr!, with the CH, lifetime increasing by one year.

* Chemical loss mechanisms in atmospheric chemistry models are not particularly
sensitive to the magnitude of methane emissions.

& Higher lightning emissions result in increased in tropospheric CH,+OH loss.
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Future Work

heriods (over a decade).

CH, and CO.
» Joint assimilation of CO and CH,

\ satellite data.

Fxtending simulations to cover IongQ

» Investigating the chemical feedback of

 Evaluating simulations using ground-
pased measurements and TROPOMI
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