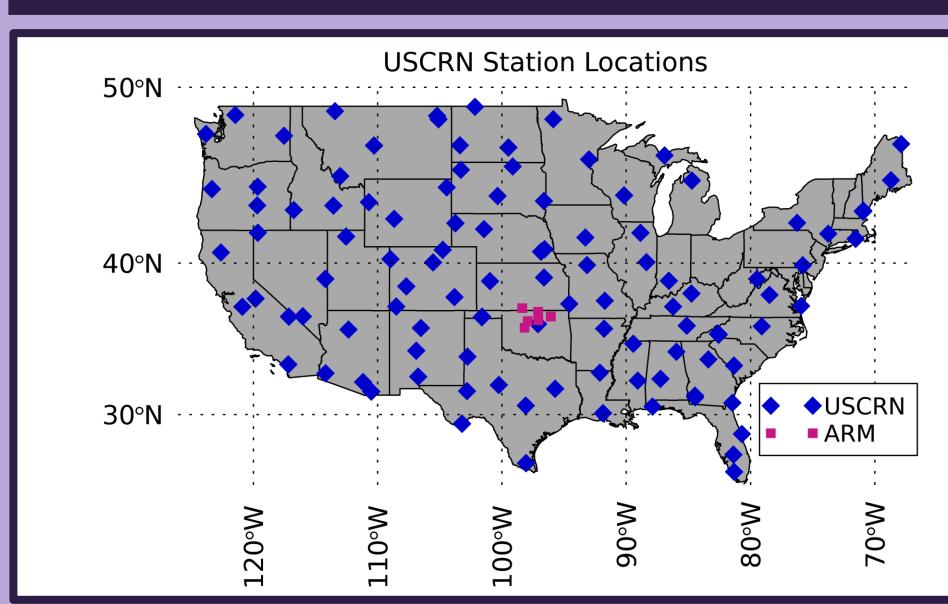


Motivation

- Soil moisture is important because it:
- Predicts drought/flooding (Gavahi et al., 2022)
- Impacts soil strength (Eylander et al., 2023)
- Contributes to the water cycle (Robinson et al., 2008; Quan et al., 2022)
- Land surface models are useful in analyzing surface soil moisture, but uncertainty is introduced from the model itself and from the quality of forcing data used
- Meteorological data has high temporal and spatial variability that is passed on to model output (Zeng et al.,2021), so selecting the best meteorological forcing data is important

Data



- Meteorological Forcing datasets for NoahMP-4.0.1 • AFWA (Air Force Weather Analysis)
- ERA5 (ECMWF Reanalysis 5)
- GDAS (Global Data Assimilation System)
- In-Situ Observational Datasets
- USCRN (U.S. Climate Resource Network) sites
- ARM Southern Great Plains Sites Eddy Covariance Flux data

Methodology

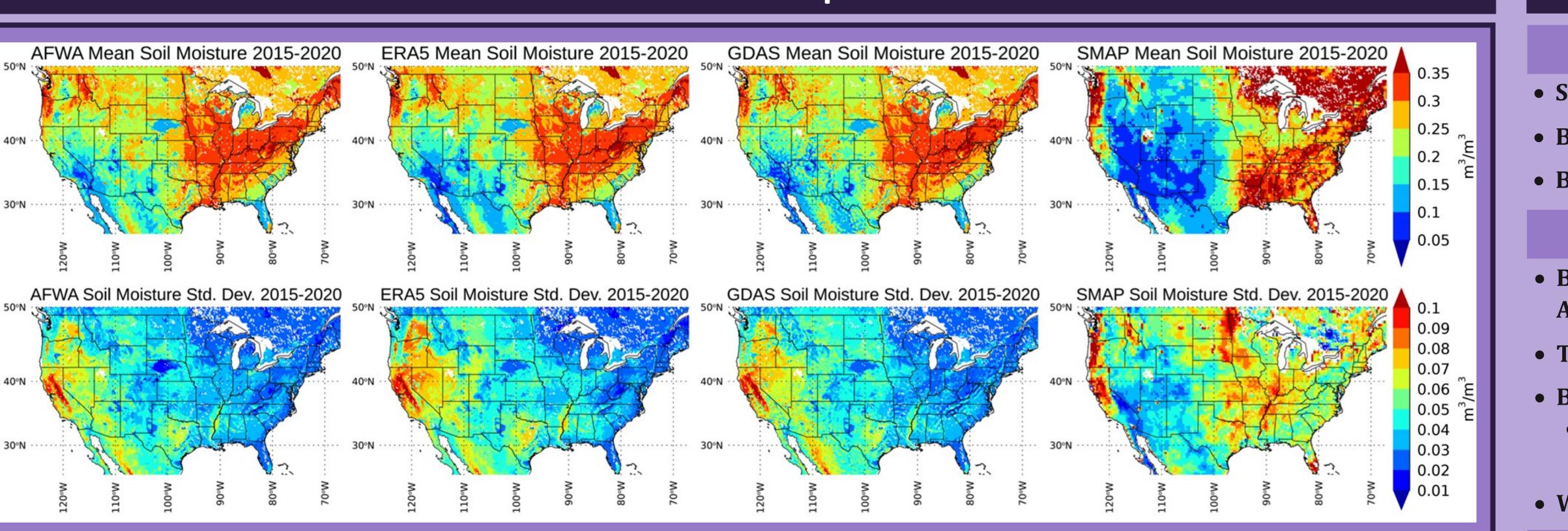
- Use the Land Information System (LIS) framework to run NoahMP model with each of the three different forcing datasets from 2010-2020
- Compare model outputs of selected variables to corresponding in situ measurements:
- Soil moisture (SM)
- Temperature
- Precipitation
- Sensible heat flux (LH)
- Latent heat flux (SH)
- Quantify impacts of uncertainty propagated through the model by each forcing dataset

Contact Information: Alexa Marcovecchio – alexamarco@email.arizona.edu | John Eylander – John.B.Eylander@erdc.dren.mil | Ali Behrangi – behrangi@email.arizona.edu | Baike Xi – baikex@arizona.edu | Guo-Yue Niu – niug@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Baike Xi – baikex@arizona.edu | Guo-Yue Niu – niug@arizona.edu | Ali Behrangi – behrangi@email.arizona.edu | Baike Xi – baikex@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Baike Xi – baikex@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Baike Xi – baikex@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Baike Xi – baikex@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Baike Xi – baikex@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Baike Xi – baikex@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Siquan Dong – xdong@email.arizona.edu | Siquan Dong – xdong@email.arizona.edu | Baike Xi – baikex@arizona.edu | Siquan Dong – xdong@email.arizona.edu | Siquan S

How do different meteorological forcings influence NoahMP soil moisture and turbulent fluxes?

Alexa Marcovecchio¹, John Eylander², Ali Behrangi¹, Guo-Yue Niu¹, Xiquan Dong¹, Baike Xi¹ ¹Department of Hydrology and Atmospheric Sciences, The University of Arizona ²Coastal and Hydraulics Laboratory, USACE Engineer Research and Development Center

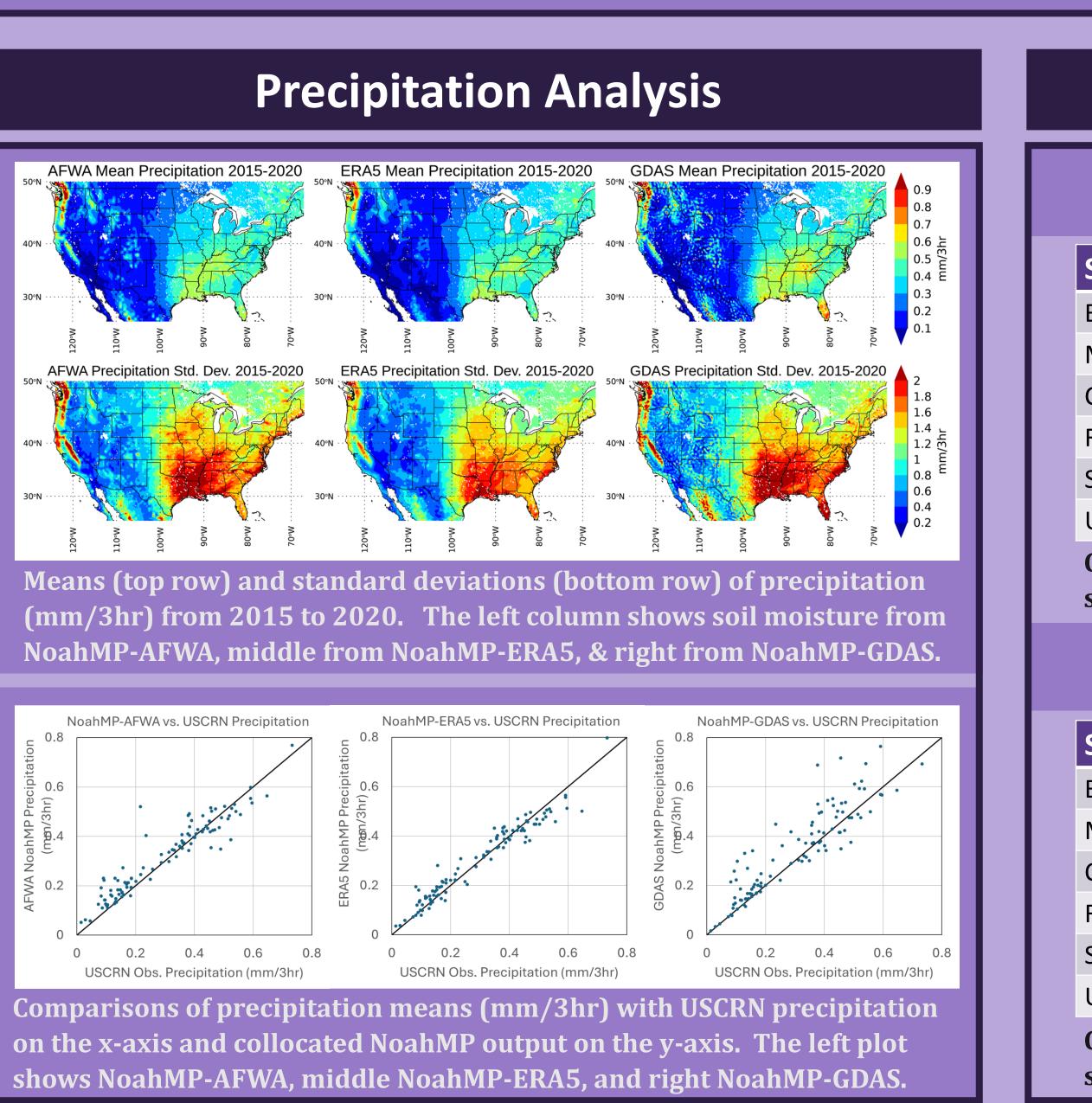
Soil Moisture Comparison



Means (top row) and standard deviations (bottom row) of soil moisture in m³/m³ from 2015 to 2020. The first column from the left shows soil moisture from NoahMP-AFWA, the second NoahMP-ERA5, the third NoahMP-GDAS, & the fourth SMAP L3 satellite observations.

Statistic	AFWA	ERA5	GDAS	SMAP	USCRN
Bias	0.048049	0.039627	0.04351	0.040365	
/lean (m³/m³)	0.24744	0.24014	0.24184	0.2349	0.19997
Correlation	0.69791	0.71789	0.6474	0.56738	
RMSE	0.090151	0.086012	0.090416	0.11491	
StdDev. (m ³ /m ³)	0.041578	0.044917	0.043626	0.058674	0.063208
Jnbiased RMSE	0.048635	0.047958	0.051493	0.003796	

Combined soil moisture statistics from AFWA-NoahMP, ERA5-NoahMP, **GDAS-NoahMP, and SMAP** L3 satellite data collocated to the 108 USCRN sites. Based on a total of 12,401 3-hour samples.



- ERA5 has the best SM based on the **combined statistics**
- SMAP has more extreme SM values than the NoahMP outputs
- Much higher standard deviations in the Mississippi River valley, Dakotas, and West Minnesota

Turbulent Fluxes Analysis

Latent Heat								
Statistic	AFWA	ERA5	GDAS	ARM				
Bias	24.429	23.082	25.88					
Mean (W/m ²)	46.87	44.753	48.204	45.614				
Correlation	0.51955	0.46954	0.52255					
RMSE	86.186	87.94	87.647					
StdDev. (W/m ²)	67.061	64.722	72.439	68.329				
Unbiased RMSE	81.975	84.283	83.142					

Combined precipitation statistics from collocated to the 7 ARM DOE sites. Based on a total of 12,401 3-hour samples.

Sensible Heat

Statistic	AFWA	ERA5	GDAS	ARM			
Bias	-22.828	-19.146	-14.426				
Mean (W/m ²)	30.931	35.1	38.168	44.127			
Correlation	0.52761	0.40899	0.4943				
RMSE	92.648	102.64	98.274				
StdDev. (W/m ²)	81.887	83.237	90.017	102.5			
Unbiased RMSE	89.726	100.78	97.098				
Combined precipitation statistics from collocated to the 7 ARM DOE sites. Based on a total of 12,401 3-hour samples.							

Discussion

NoahMP-AFWA

• Soil Moisture stats are comparable to ERA5

• Best temperature of all three, but by a small margin

• Best SH relative to observations

NoahMP-ERA5

• Best choice for soil moisture, though comparable to **AFWA**

• Temperature comparable to AFWA and GDAS

- Best choice for precipitation
 - Bias is two orders of magnitude smaller than AFWA and GDAS
- Worst SH analysis

NoahMP-GDAS

- Worst choice for soil moisture
- Temperature comparable to ERA5 and GDAS
- Worst precipitation
 - Topographic corrections seem to negatively impact
 - the accuracy of the data

Conclusions

- ERA5 is preferrable if you want to do SM modeling • It has the best SM and precipitation
- AFWA would also be good for SM analysis if you care more about turbulent heat fluxes
- GDAS not ideal for SM modeling due to errors propagated by the precipitation dataset
- SMAP L3 SM is not as accurate as the NoahMP outputs
- There is no clear "best" forcing dataset for LH

References

- Eylander, J., Kumar, S., Peters-Lidard, C., Lewiston, T., Franks, C., & Wegiel, J. (2022). History and Development of the USAF Agriculture Meteorology Modeling System and Resulting USAF-NASA Strategic Partnership. Weather and Forecasting, 37(12), 2293-2312. https://doi.org/10.1175/WAF-D-22-0064.1
- Gavahi, K., Abbaszadeh, P., Moradkhani, H. (2022). How does precipitation data influence the land surface data assimilation for drought monitoring. Science of the Total Environment, 831, 154916.
- https://doi.org/10.1016/j.scitotenv.2022.154916
- Robinson, D.A., Campbell C.S., Hopmans, J.W., Hornbuckle, B.K., Jones, S.B., & Knight R. (2008). Soil moisture measurement for ecological and
- hydrological moistureshed-scale observatories: A review. Vadose Zone *Journal*, 7, 358-389. https://doi.org/10.2136/vzj2007.0143
- Quan, Q., Liang, W., Yan, D., Lei, J. (2022). Influences of joint action of natural and social factors on atmospheric process of hydrological cycle in Inner Mongolia, China. Urban Climate, 41, 101043.
- https://doi.org/10.1016/j.uclim.2021.101043
- Zeng, J. Yuan, X., Ji, P., & Shi, C. (2021). Effects of meteorological forcings and land surface model on soil moisture over China. Journal of Hydrology, 603, 126978. https://doi.org/10.1016/j.jhydrol.2021.126978