3 .
Data Sources: Study Area:
Spatial/Temporal

Stochastic-Deterministic Fusion: A Generative Downscaling L
Lol Framework for High-Resolution Atmospheric Forecasting and oembarid region

“1km/1-hour | - High-resolution target Climate: Hot summers, mild winters, with
for training " " " istinct wet (monsoon) and dr ns.
Hydrologic Applications distinct wet (monsoon) and dry seasons
dataset T Precipitation: “350 mm annually.
~10 km / 1-h - Basis for f = My
10km /-hour s Topography: Features deserts, plateaus,

projections (post bias Hosseln Yousefl Sohi, Andrew Bennett, Guo-Yue Niu, All Behrangi mountains, and major river basins.

correction)
Hydrology: Home to the Colorado and
Gila Rivers, with many ephemeral streams.

Weather Patterns: Influenced by
monsoons, frontal storms, and prolonged
droughts.

Relevance: Critical for improving water

Dataset Role in Project

Variables:
Precipitation (Current work) - Temperature - 1 ODbjective:

::Igrr]g'v(\j,gze _Ra\gglfonspeed  Shortwave Radiation = * Meteorological Downscaling with Deep Learning: Develop a novel hybrid framework that enhances weather and climate
predictions by leveraging U-Net for large-scale atmospheric patterns and diffusion models for fine-scale variability.

***This work considers the interdependencies between ( : e )
meteorological variables to enhance forecast accuracy. * Enhanced Forecasting: Improve extreme weather prediction by downscaling short-term weather forecasts (GEFS)

Meteorological variables are inherently interconnected, influencing and long-term climate projections (GCMSs), capturing key meteorological features at high resolution.

each other in complex ways. By capturing these interdependencies, we . : : _ _ : resource management and
ensure more realistic and physically consistent forecasts, preventing * Real-World Integration: Apply high-resolution downscaled outputs to hydrologic models, improving climate assessments.

inconsistencies that may arise from treating each variable in isolation. flood forecasting, drought assessment, and water resource management. - _
Phase 2: Stochastic Diffusion

Phase 1: Deterministic Regression NV 7B Residual Calculation:

First, we learn a deterministic regression Fg(M,,S;) to estimate the Ter1 = Mep1 — Beta
conditional mean, namely Phase 1 Phase 2 . Diffusion Modeling:

Fo(M,S;) = E[M 1| M, S,] UNet model Diffusion Model L earn the conditional distribution of residuals

To do so, we can Train a UNet based on the paired data samples (p(re41|us+1, Mg, S¢)) using a denoising diffusion model.
{(M¢,+1, My, S¢,)}i-oand, the MMSE criterion as follows | | G ‘ . Methods-

DDPM (Denoising Diffusion Probabilistic Models): Generates

N
0" = argeminlz ”Mt-+1 — Ko (Mt-» St-)“% cegmentat n— — : : ST _
N . . ! e segmentation multiple plausible precipitation forecasts to capture uncertainty and
=

map

With the learned regression model at hand, we can form the | EE variability.
residuals 5] I
Tes1 = Meyp1- Pepqr Where  peq = Fo«(My, S¢) | 1

DDPM vs EDM: Precipitation Forecast Comparison

R E D M (E I d t d DDPM Ensemble Members
i’”i’* . UCI a’ e = = DDPM Ensemble Mean
EECany

110 | - _ ’ | Diffusion Models): e
>l g(x1:7|x0) =]y a(xe[xe—1) = [[;o1 N (x5 V1 = Bexi—1, Be]) Produces a single

Short-Term GEFS Results EE Y deterministic best-guess

I)O(Xt—1|Xt) o
. Training  Testing - | @ - —— > @ e — forecast, providing a
MetrICS *D’D =» conv 3x3, RelL,U R K P R -
Performance Performance : copy and crop e P o Ii ! clear but uncertainty-free

(i abini L
e ([(Xt ’Xt— 1 B S %

MISE 0:0025 0:0056 ‘vi Y at :Tijs\?;f po(x0:1) = p(xr) [T,— Po(xe—1|x:) = p(x1) [Ty N (xe—1: po(x¢, 1), Bo (%, ) prediction.
RZ 0.7702 0.50 > > | =) Copnv 1x1

KGE 0.8482 0.64 Training:

Monthly Precipitation Time Series (Full Dataset LOSS FunCtlon Mean Squared Error (MSE) Q(XO:T) . 8 I
| = o Optimizer: Adam (Learning Rate = 1e-4) E[—log po(x0)] < Eq [_log qlngﬂxOJ = Lt Key Innovations & Advantages

Batch Size: 16  Hybrid U-Net + Diffusion Architecture: Combines deterministic
Epochs: 60 large-scale pattern recognition with stochastic fine-scale variability for
accurate and uncertainty-aware downscaling.

Precipitation (mm)
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‘ * Multi-Variable Interdependency Modeling: Simultaneously downscales
02-000-01 2000-07 2001-01 2001-07  2002-01 2'2-07 2003-01  2003-07  2004-01 4 prECIPItatlon’ temperature’ humldlty’ and Wlnd Whlle preserVIng thelr
physical relationships for coherent forecasts.

 Beyond GANs — Stable & High-Resolution Outputs: Avoids mode
collapse and training instability, producing sharper, more diverse, and
physically consistent high-resolution fields.

Precipitation (mm/month)
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Long-Term GCM Projections

2000-03-06 00:00

Input:. ERAS
Target: AORC

Training

 Near-CAM Accuracy at a Fraction of the Cost: Delivers kilometer-
scale detail comparable to convection-allowing models (CAMs) while
drastically reducing computational expense.
Versatile Across Weather & Climate Time Scales: Enhances short-
term GEFS forecasts and long-term GCM projections, supporting both
real-time forecasting and climate adaptation.

Test Input Test Target Test Prediction
2000-01-22 09:00 2000-01-22 09:00 2000-01-22 09:00
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