Empirical Analysis and HEC-HMS Modeling of Green Stormwater Infrastructure: Stormwater Capture, Ponding, and Infiltration in Urban Tucson Eden Harper¹, Neha Gupta², Justin Warlick³, Eleonora Demaria³, Yoga Korgaonkar⁴, Ty P.A Ferré¹

I. Introduction

- Green Stormwater Infrastructure (GSI) provides an opportunity to mitigate urban flooding while supporting vegetation growth and urban recharge.
- Observational research on GSI however remains limited. GSI systems are complex and highly dependent on local urban heterogeneity.

rainfall. Figure 4 (right): Discharge into Seneca Park during rain event.

Four GSI sites within Tucson Arizona were investigated, including: Richey Park, Cherry Park, Seneca Park, and Alvernon Park.

Research Objectives: Estimate the stormwater harvested over the study period, investigate GSI infiltration capabilities, and apply HEC-HMS to small scale urban watersheds.

II. Methods

- Pressure transducers (PTs) were placed within the basins, collecting time series stage data for a period of over two years. Drone surveys had also been conducted, providing high resolution DEM's for each park. These were used to generate stage-storage functions for each basin.
- A Storage-Routing Model was developed in Python, which converted stage data to storage values. If storage exceeded ponding capacity (the point at the overflow crest), excess storage was routed to the next reservoir. Once routed, volume harvested estimates could be calculated.

- HEC-HMS models were then developed to predict GSI response to various design storms, as well as investigate flood mitigation capabilities.
- Basin model development was accelerated with ArcGIS integration, enhancing HEC-HMS's flexibility and enabling its application to small-scale urban-watersheds.
- Runoff generation and hydrograph transformation were modeled using the SCS Curve Number (CN) and SCS Unit Hydrograph method.
- Time-series inputs for model calibration included PT reservoir stage data and rainfall measurements from nearby tipping-bucket rain gauges.

heterogeneity compared to field measurements.

Figure 7 (above): Example of PT drawdown rate used for effective Ksat.

¹Department of Hydrology and Water Resources, The University of Arizona ²Arizona Institute for Resilience, The University of Arizona ³Pima County Regional Flood Control District ⁴School of Geography, Development and Environment, The University of Arizona

III. Storage Routing Model Results

Richey Park also captured a considerable amount of stormwater. Cherry Park's second lower basin received little to no overflow. Alvernon's PT is located within a channel, thereby it cannot be treated as a reservoir.

IV. HEC-HMS Model Calibration

		L		30111/3-11111111	ensity Duration			
GSI Site:	Richey	Cherry - UB	Cherry - LB	Seneca - UB	Seneca - MB	Seneca - LB	Alvernon - UB	Alvernon - LB
Peak Inflow [CFS]	131.6	22.1	22	61.8	62	64.6	289.5	48.3
Peak Discharge [CFS]	131.5	22	21.9	61.8	62	63.9	291.2	48
Inflow Volume [acre-ft]	8	2.6	2.5	2.6	2.6	2.8	11.7	2
Discharge Volume [acre-ft]	7.9	2.5	2.4	2.5	2.5	2.5	11.4	1.9
Peak Elevation [ft]	4	1.8	2.2	1.6	1.6	3	3.2	2.9
Peak Storage [acre-ft]	0.9	0.1	0.1	0.1	0.1	0.4	0.4	0.2
Time to peak Inflow [hrs]	0.93	1.48	1.48	0.75	0.77	0.77	0.78	0.78
		10	0 Year 24-Hour	Storm/6-hour In	tensity Duration			
GSI Site:	Richey	Cherry - UB	Cherry - LB	Seneca - UB	Seneca - MB	Seneca - LB	Alvernon - UB	Alvernon - LB
Peak Inflow [CFS]	26.6	8.6	8.5	7.8	7.9	9	51.4	8.6
Peak Discharge [CFS]	26.5	8.5	8.4	7.8	7.9	9	51.4	8.6
Inflow Volume [acre-ft]	13.9	4.5	4.2	4.3	3.35	4.7	22.7	3.8
Discharge Volume [acre-ft]	13.7	4.2	4	4.2	3.3	4.4	22.6	3.7
Peak Elevation [ft]	2.3	1.7	2.1	1.2	1.3	2.5	2.9	2.2
Peak Storage [acre-ft]	0.4	0.1	0.1	0.05	0.1	0.3	0.3	0.1
	4 -	15	15	15	15	15	15.00	15.00

13 (bottom): Results for a long-duration, lower-intensity storm event. Although every basin exceeds its crest elevation, peak elevation remains lower, for many staying within the basin's maximum capacity.

: Seneca Park retention basin hours after

	Richey				
ned fro	Cherry				
	PT Recording Period		Weighted	Charmy I.P.	
	T T Necoluling T chou	Area	CN	Cherry - LB	
GSI Parks		mi ²	[]	Seneca - UB	
Richey	7/23/2022 - 4/22/2024	0.083	92.8	Seneca - MB	
Cherry	3/1/2023 - 9/4/2024	0.027	94.0	Seneca - LB	
Seneca	7/1/2022 - 2/10/2024	0.053	91.6	Seneca - Total	
Alvernon	7/1/2022 - 7/22/2023	0.255	91.9	Alvernon	

Figure 8 (left): List of GSI sites and characteristics of the watersheds, as well as the PT recording period. Figure 9 (right): Python output for total stormwater harvested over the recording period estimate for each basin.

Total Volume

Harvested Estimat

[acre-ft]

0.53

0.20

0.66

1.39

GSI Parks

V. HEC-HMS Model Results

- Two types of 100-Year events have been simulated:
- 100-Year 1-Hour Storm/5min Intensity
- This is a short, very intense event which will lead to runoff almost immediately.
- 100-Year 24-Hour Storm/6hour Intensity
- This is a longer, less intense event which over time will lead to runoff as precipitation exceeds soil moisture capacity.

	VI.	Ir	nf		
A: Richey Ba	isin				
Event Date	Peak St	age	Effec Ks		
Event DatePeak StageEffect Ksi-[ft][ft/d7/23/20221.878/8/20223.288/24/20223.2610/5/20221.931/17/20233.437/17/20232.547/31/20232.281/23/20240.69✔Results indicate a potential decrease in effective Ksat over time 					
short d	uratio	n.			
 Obscap HECSCA HECSC	servat oture a C-HM le urb C-HM sites inage C-HM rm eve se site ile inf se site	tion a sig S in S in S's , wh infr S si ents es ra iltra iltra iltra	al d gnifi tegi wat flex nere asti apic s is apic tior offe ve s		

ethod/citations

Infiltration Rate Analysis

	B: Cherry B				
Effective Ksat	Event Date	Peak	Stage	Effe K	ective sat
[ft/day]	-	[f	t]	[ft/	'day]
7 1.5	6/21/2024		0.62		3.2
8 2.0	6/28/2024		1.62		2.0
6 1.6	7/25/2025		1.66		2.0
3 1.8					
3 1.9	C2: Seneca	Seneca Lowe			
4 1.8 8 1.4	Event Date	Peak	Stage	Effe K	ective sat
9 1.4	- [ft] [ft		[ft/	day]	
	7/23/2022		0.92		1.1
а	8/8/2022		0.76		1.0
ise in	8/24/2022		2.40		0.9
	1/18/2023		1.39		0.9
ertime	7/18/2023		1.48		0.9
s. cant iltration	While the inconclu method of	e resu sive, can re	ults ai this a educe	re Inal e th	lysis e

C1: Seneca L						
Event Date	Event Date Peak Stage					
-	- [ft]					
7/1/2022	1.22	1.4				
7/23/2022	1.53	1.7				
8/8/2022	1.43	0.8				
8/24/2022	1.44	0.6				
9/12/2022	0.60	1.0				
10/5/2022	1.19	1.9				
1/17/2023	1.26	0.8				
5/16/2023	0.95	1.0				
7/17/2023	1.39	0.8				
7/28/2023	1.39	1.2				
7/31/2023	0.85	0.8				
1/24/2024	1.18	1.1				
2/6/2024	0.55	0.9				

Figure 14 (above, A-C): Table of collected effective Ksat values.

VIII. Conclusions

time required for field

available.

testing if sufficient data is

- onal data indicated that the GSI sites under investigation significant amount of stormwater.
- integration with ArcGIS enabled its application to smalln watersheds.
- 's flexibility makes it well-suited for modeling complex where local-scale heterogeneity (e.g., roads, buildings, nfrastructure) plays a significant role.
- simulations demonstrated that GSI response to large nts is highly influenced by storm intensity—overloading rapidly can quickly exceed their design capacity.
- ration rate analysis results were mostly inconclusive, od offers a relatively quick way to estimate a ative saturated hydraulic conductivity for an entire basin.
- ed efficiency can improve monitoring efforts as well as se field time.

VII. References

- Ara, Z., & Zakwan, M. (2018). Estimating Runoff Using SCS Curve Number Method. International Journal of Emerging Technology and Advanced Engineering 8, 195–200. https://www.researchgate.net/publication/329207729_Estimating_Runoff_Using_SCS_Curve_Number_M
- Arizona Department of Water Resources. (1999). State Standard for Stormwater Detention/Retention. Arizona Department of Water Resources Flood Mitigation Section, Aug. 1999,
- www.azwater.gov/sites/default/files/SS8-99Detention_Retention.PDF
- Djokic, D. (2012). Hydrologic and hydraulic modeling with ArcGIS. ESRI, San Diego.
 - https://proceedings.esri.com/library/userconf/proc17/tech-workshops/tw_497-312.pdf
- Ebrahimian A, Sample-Lord K, Wadzuk B, Traver R. (2020) Temporal and spatial variation of infiltration in urban green infrastructure. Hydrological Processes; 34: 1016–1034. https://doi.org/10.1002/hyp.13641
- Feldman A., F. Romano, & M. Franco. (2019). Green Infrastructure Implementation in Urban Parks for Stormwater Management. Journal of Sustainable Water in the Built Environment, 5(3), 05019003. https://doi.org/10.1061/JSWBAY.0000880
- Hydrologic Engineering Center. (2021). HEC-HMS User's Manual version 4.7. Preface. February 18, 2021, from https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/4.7/preface