Investigation of hydrochemical characteristics of rare earth elements in various formation water types in the Paradox basin

Danielle Louise Rehwoldt1, Jennifer C. McIntosh1
1Department of Hydrology and Atmospheric Sciences, University of Arizona
 

Rare earth elements (REE) are essential to the manufacturing of technologies today. Alloys that contain REE are used in everyday life such as computer memory, DVDs, rechargeable batteries, cell phones, catalytic converters, magnets, fluorescent lighting and much more. There is a growing transition towards a carbon-free economy with the use of REE. However, these metals are difficult to mine because it is unusual to find them in concentrations high enough for economical extraction. REE are naturally abundant in sedimentary basin fluids and may be used as natural tracers of fluid sources, pathways and fluid-rock reactions. This study utilizes recently-collected REE data from formation waters in the Paradox Basin in the Colorado Plateau to investigate concentrations, patterns, and sources of REE. Preliminary results indicate that brines sourced from paleo-evaporated seawater have the highest REE (sum REE values as high as 7.514 ppb), and are particularly enriched in light, more readily-extractable REE. Brines that are sourced from salt dissolution by topographically-driven meteoric recharge that has interacted with siliciclastic rocks have different REE patterns compared to salt-derived brine seeps that have been diluted by snowmelt. REE may be abundant in these brines involved with siliciclastic rocks or the salt-derived seeps diluted by snowmelt. The conclusions will convey the possible sources of REE and how REE interacts with these different sources.

Go to All Abstracts | 2021 El Día Home Page