Have land surface processes in Earth system models improved over time?

Department of Hydrology and Atmospheric Sciences

4 pm on Thursday, February 18, 2021
Contact the department for zoom details or subscribe to the seminar email list

Forrest M. Hoffman
Distinguished Computational Earth System Scientist
Group Leader, Computational Earth Sciences Group, Oak Ridge National Laboratory

Abstract

Better representation of biogeochemistry–climate feedbacks and ecosystem processes in Earth system models (ESMs) is essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century and beyond. Model–data comparison and integration activities are required to inform improvement of land carbon cycle models and the design of new measurement campaigns aimed at reducing uncertainties associated with key land surface processes. The International Land Model Benchmarking (ILAMB) Package was designed to facilitate systematic and comprehensive model–data comparison and improve understanding of factors influencing model fidelity. We used ILAMB to benchmark and intercompare terrestrial carbon cycle models coupled within ESMs used to conduct historical simulations for the Fifth and Sixth Phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). Results indicate that the suite of CMIP6 land models exhibits better performance than the suite of CMIP5 land models in comparison with observations for a variety of biogeochemical, hydrological, and energy-related variables. These improvements are partially attributed to reductions of biases in temperature, precipitation, and incoming radiation, suggesting that free-running atmosphere models in these ESMs also improved; however, biases in some regions increased. An analysis of forcing variables, prognostic land variables, and relationships from variable-to-variable comparisons indicate an overall improvement in most CMIP6 models, with relationships for some models exhibiting the greatest improvement in ILAMB scores, suggesting that improved model process representation in some models, and likely increased model complexity, contributed to improved model performance.

Bio

Forrest M. Hoffman is a Distinguished Computational Earth System Scientist and the Group Leader for the Computational Earth Sciences Group at Oak Ridge National Laboratory (ORNL). As a resident researcher in ORNL’s Climate Change Science Institute (CCSI) and a member of ORNL’s Computational Sciences & Engineering Division (CSED), Forrest develops and applies Earth system models (ESMs) to investigate the global carbon cycle and feedbacks between biogeochemical cycles and the climate system. He applies data mining methods using high performance computing to problems in landscape ecology, ecosystem modeling, remote sensing, and large-scale climate data analytics. He is particularly interested in applying machine learning methods to explore the influence of terrestrial and marine ecosystems on hydrology and climate. Forrest is also a Joint Faculty Member in the University of Tennessee’s Department of Civil & Environmental Engineering in nearby Knoxville, Tennessee.